
Copyright © 2002 Intel Corporation.

1*Other names and brands may be claimed as the property of others.

HyperHyper--Threading TechnologyThreading Technology
and its Impact on and its Impact on OpenMPOpenMP* *

Copyright © 2002 Intel Corporation.

2*Other names and brands may be claimed as the property of others.

AgendaAgenda
�� HyperHyper--Threading OverviewThreading Overview
�� Exploiting HyperExploiting Hyper--Threading Threading

TechnologyTechnology
�� Explicit ThreadsExplicit Threads
�� OpenMPOpenMP Programming APIProgramming API

�� OpenMP* Programming ExampleOpenMP* Programming Example

Copyright © 2002 Intel Corporation.

3*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview

Today�s ProcessorsToday�s Processors
�� Single Processor SystemsSingle Processor Systems

�� Instruction Level Parallelism (ILP)Instruction Level Parallelism (ILP)
�� Performance improved with more CPU resourcesPerformance improved with more CPU resources

�� Multiprocessor SystemsMultiprocessor Systems
�� Thread Level Parallelism (TLP) Thread Level Parallelism (TLP)
�� Performance improved by adding more CPUsPerformance improved by adding more CPUs

Hyper-Threading technology enables
TLP to single processor system.

Copyright © 2002 Intel Corporation.

4*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview

Today�s SoftwareToday�s Software
�� Sequential tasksSequential tasks

!! Parallel tasksParallel tasks

Open FileOpen File Edit Spell CheckEdit Spell Check

Open DB�sOpen DB�s Address Book Address Book

InBox InBox MeetingMeeting

Copyright © 2002 Intel Corporation.

5*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview

MultiMulti--ProcessingProcessing

Multi-tasking workload + processor resources
=> Improves MT Performance

Multi-tasking workload + processor resources
=> Improves MT Performance

�� Run parallel tasks using multiple processors Run parallel tasks using multiple processors

CPU 1CPU 1

CPU 2CPU 2

CPU 3CPU 3

Copyright © 2002 Intel Corporation.

6*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview
The Increase in Instruction Processing The Increase in Instruction Processing (Multi(Multi--

tasking Workload from Previous Slide)tasking Workload from Previous Slide)
Throughput of HyperThroughput of Hyper--Threading is Due to:Threading is Due to:

�� The design of the Intel The design of the Intel Netburst Netburst MicroMicro--
architecturearchitecture

�� The mix of IAThe mix of IA--32 Instructions typically 32 Instructions typically
found in multifound in multi--threaded codethreaded code

Copyright © 2002 Intel Corporation.

7*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview

Why HyperWhy Hyper--Threading?Threading?
�� Studies[1] show that only 35% of Studies[1] show that only 35% of

execution resources of the Intel execution resources of the Intel
NetBurst NetBurst MicroMicro--architecture are usedarchitecture are used

�� HyperHyper--Threading technology takes Threading technology takes
advantage of the inherent parallelism advantage of the inherent parallelism
of multithreaded code to provide the of multithreaded code to provide the
processor core with a second thread processor core with a second thread
of executionof execution

Copyright © 2002 Intel Corporation.

8*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview

HyperHyper--Threading TechnologyThreading Technology
Hyper-Threading

Processor Processor
Execution Execution
ResourcesResources

ASAS ASAS

Multiprocessor

Processor Processor
Execution Execution
ResourcesResources

ASAS

Processor Processor
Execution Execution
ResourcesResources

ASAS

AS = Architecture State (eax, ebx, control registers, etc.), xAPIC

Hyper-Threading Technology looks like
two processors to software

HyperHyper--Threading Technology looks like Threading Technology looks like
two processors to softwaretwo processors to software

Copyright © 2002 Intel Corporation.

9*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview

How is this done?How is this done?
�� Processors that are enabled with Processors that are enabled with

HyperHyper--Threading Technology:Threading Technology:
��Manage incoming instructions from two Manage incoming instructions from two

different software threadsdifferent software threads
��The processor keeps track of the data The processor keeps track of the data

processing status of each set of processing status of each set of
instructionsinstructions

Copyright © 2002 Intel Corporation.

10*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview
Switching from One Logical Processor Switching from One Logical Processor

to the Other [1]to the Other [1]

Copyright © 2002 Intel Corporation.

11*Other names and brands may be claimed as the property of others.

Three Intel Three Intel XeonXeonTMTM Design Goals Design Goals
to Support Hyperto Support Hyper--Threading[2]Threading[2]

�� Minimize Die Area Minimize Die Area �� less than 5% in less than 5% in
additional die area costadditional die area cost

�� When one logical processor stalls the When one logical processor stalls the
other logical processor continues to other logical processor continues to
make forward progressmake forward progress

�� A single threaded application running A single threaded application running
on a processor with Hyperon a processor with Hyper--Threading Threading
technology executes at same speed as technology executes at same speed as
a processor without this capabilitya processor without this capability

Copyright © 2002 Intel Corporation.

12*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview

Resource UtilizationResource Utilization
Ti

m
e

(p
ro

c.
 c

yc
le

s)

Note: Each box represents a processor execution unit

Superscalar Multiprocessing
Hyper-

Threading
Multiprocessing With

Hyper-Threading

Copyright © 2002 Intel Corporation.

13*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview

Key PointKey Point
� Hyper-Threading technology enables

better utilization of hardware resources
� Hyper-Threading technology provides

more computing power for multi-
threaded applications

Copyright © 2002 Intel Corporation.

14*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview
Performance Increases from HyperPerformance Increases from Hyper--Threading Threading

Technology on an Online Transaction Processing Technology on an Online Transaction Processing
Workload[2]Workload[2]

Copyright © 2002 Intel Corporation.

15*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview

Web Server Benchmark Web Server Benchmark
Performance[2]Performance[2]

Copyright © 2002 Intel Corporation.

16*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview
SoftwareSoftware--based Speculative based Speculative

PrecomputationPrecomputation[3][3]
�� Technique to improve the latency of Technique to improve the latency of

singlesingle--threaded applicationsthreaded applications
�� Algorithmic Sketch:Algorithmic Sketch:

�� Speculative thread fetches memory objects Speculative thread fetches memory objects
(usually in a (usually in a strided strided manner)manner)

�� Main thread does the computation with Main thread does the computation with
prefetchedprefetched data objectsdata objects

�� Acronym Acronym -- SPSP

Copyright © 2002 Intel Corporation.

17*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview
Initial performance data: speculative prefetching (SP) on a pre-

production
version of an Intel® Xeon� processor with Hyper-Threading

Technology[3]

Copyright © 2002 Intel Corporation.

18*Other names and brands may be claimed as the property of others.

Hyper-Threading Overview
Performance Gains with HyperPerformance Gains with Hyper--Threading Threading

TechnologyTechnology
�� HyperHyper--Threading technology can provide a Threading technology can provide a

performance gain of up to 30% over a comparable performance gain of up to 30% over a comparable
IAIA--32 processor without Hyper32 processor without Hyper--Threading Threading
technology, assuming:technology, assuming:

�� Multithreaded operating system and application codeMultithreaded operating system and application code

�� For multiprocessor systems:For multiprocessor systems:
�� Increase in computing power will generally scale linearly Increase in computing power will generally scale linearly

with an increase in the number of physical processorswith an increase in the number of physical processors

�� Scalability of performance is highly dependent on Scalability of performance is highly dependent on
the nature of the applicationthe nature of the application

Copyright © 2002 Intel Corporation.

19*Other names and brands may be claimed as the property of others.

AgendaAgenda
�� HyperHyper--Threading OverviewThreading Overview
�� Exploiting HyperExploiting Hyper--Threading Threading

TechnologyTechnology
�� Explicit ThreadsExplicit Threads
�� OpenMPOpenMP Programming API Programming API

�� OpenMPOpenMP* Programming Example* Programming Example

Copyright © 2002 Intel Corporation.

20*Other names and brands may be claimed as the property of others.

Parallel Computing Overview
Writing a Parallel ApplicationWriting a Parallel Application

Original Problem
Tasks, shared and local data

Decompose
into tasks

Code with a
parallel Prog. API

Corresponding source code

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate(tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate(tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate(tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int Num = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N, Data);
for (int I= ID; I<N;I=I+Num){

tmp = func(I, Data);
Res.accumulate(tmp);

}
}

Group onto

execu
tion units.

Units of execution + new shared data
for extracted dependencies

Copyright © 2002 Intel Corporation.

21*Other names and brands may be claimed as the property of others.

Parallel Computing Overview
What is OpenMP*?What is OpenMP*?

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP*: An API for Writing Multithreaded
Applications

� Compiler directives and library routines for parallel
application programmers

� Makes it easy to create multi-threaded (MT) programs
in Fortran, C and C++

� Standardizes last 15 years of SMP practice

OpenMP*: An API for Writing Multithreaded OpenMP*: An API for Writing Multithreaded
ApplicationsApplications

� Compiler directives and library routines for parallel
application programmers

� Makes it easy to create multi-threaded (MT) programs
in Fortran, C and C++

� Standardizes last 15 years of SMP practice

Copyright © 2002 Intel Corporation.

22*Other names and brands may be claimed as the property of others.

Parallel Computing Overview

OpenMP* Programming ModelOpenMP* Programming Model
Fork-Join Parallelism:

"Master thread spawns a team of threads as needed.

"Parallelism is added incrementally: i.e., the
sequential program evolves into a parallel program.

Parallel Regions

Master
Thread

Copyright © 2002 Intel Corporation.

23*Other names and brands may be claimed as the property of others.

AgendaAgenda
�� HyperHyper--Threading OverviewThreading Overview
�� Exploiting HyperExploiting Hyper--Threading Threading

TechnologyTechnology
�� Explicit ThreadsExplicit Threads
�� OpenMPOpenMP Programming APIProgramming API

�� OpenMPOpenMP* Programming Example* Programming Example

Copyright © 2002 Intel Corporation.

24*Other names and brands may be claimed as the property of others.

Pi ProgramPi Program
static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=1;i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}}

OpenMPOpenMP* Solutions* Solutions

Copyright © 2002 Intel Corporation.

25*Other names and brands may be claimed as the property of others.

Pi: Windows* Pi: Windows*
ThreadsThreads#include <windows.h>

#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
double global_sum = 0.0;

void Pi (void *arg)
{

int i, start;
double x, sum = 0.0;
static long num_steps = 100000;
double step;

start = *(int *) arg;
step = 1.0/(double) num_steps;

for (i=start;i<= num_steps; i=i+NUM_THREADS){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
EnterCriticalSection(&hUpdateMutex);
global_sum += sum;
LeaveCriticalSection(&hUpdateMutex);

}

void main ()
{

double pi; int i;
DWORD threadID;
int threadArg[NUM_THREADS];

for(i=0; i<NUM_THREADS; i++) threadArg[i] = i+1;

InitializeCriticalSection(&hUpdateMutex);

for (i=0; i<NUM_THREADS; i++){
thread_handles[i] = CreateThread(0, 0,

(LPTHREAD_START_ROUTINE) Pi,
&threadArg[i], 0, &threadID);

}

WaitForMultipleObjects(NUM_THREADS,
thread_handles, TRUE,INFINITE);

pi = global_sum * step;

printf(" pi is %f \n",pi);
}

Doubles code size!

OpenMPOpenMP* Solutions* Solutions

Copyright © 2002 Intel Corporation.

26*Other names and brands may be claimed as the property of others.

Simple Is BetterSimple Is Better
Threads libraries:Threads libraries:

�� Pro: Programmer Pro: Programmer hashas control over everythingcontrol over everything
�� Con: Programmer Con: Programmer mustmust control everythingcontrol everything

Control
over all
threads

High
complexity

High
programming
costs

The simplicity of OpenMP*
lowers programming costs.
The simplicity of OpenMP*
lowers programming costs.

OpenMPOpenMP* Solutions* Solutions

Copyright © 2002 Intel Corporation.

27*Other names and brands may be claimed as the property of others.

Pi: Pi: OpenMPOpenMP* version* version
#include <omp.h>
static long num_steps = 100000; double step;

void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

#pragma omp parallel for reduction(+:sum) private(x)
for (i=1;i<= num_steps; i++){

x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

OpenMPOpenMP* Solutions* Solutions

OpenMP* adds 2
lines of code.

OpenMP* adds 2
lines of code.

Copyright © 2002 Intel Corporation.

28*Other names and brands may be claimed as the property of others.

OpenMPOpenMP*: Easy as Pi*: Easy as Pi
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for reduction(+:sum) private(x)

for (i=1;i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

OpenMP* Solutions

OpenMP* simplifies multithreading.OpenMP* simplifies multithreading.

Copyright © 2002 Intel Corporation.

29*Other names and brands may be claimed as the property of others.

Key Take AwayKey Take Away

If a multi-threaded application performance
does not improve on an MP system, you will
have minimal benefit with Hyper-Threading
technology.

Copyright © 2002 Intel Corporation.

30*Other names and brands may be claimed as the property of others.

SummarySummary
�� HyperHyper--Threading Technology gives Threading Technology gives

you more computing power to throw at you more computing power to throw at
your problems.your problems.

�� OpenMP* is an easy to use API for OpenMP* is an easy to use API for
writing multithreaded programs.writing multithreaded programs.

�� Continue to use good threaded Continue to use good threaded
programming practices with Hyperprogramming practices with Hyper--
Threading technology.Threading technology.

Copyright © 2002 Intel Corporation.

31*Other names and brands may be claimed as the property of others.

ReferencesReferences

� [1] �Introduction to Hyper-Threading Technology� at the URL:
http://www.intel.com/technology/hyperthread/download/25000802.
pdf .

� [2] D. T. Marr, F Binns, D. L. Hill, G. Hinton, D. Koufaty, J. A. Miller,
M. Upton, �Hyper-Threading Technology Architecture and
Microarchitecture�, Intel Technology Journal, Vol. 6, No. 1,
February 2002.

� [3] H. Wang, P. Wang, R. D. Weldon, S. M. Ettinger, H. Saito, M.
Girkar, S. S. Liao, J. P. Shen, �Speculative Precomputation:
Exploring the Use of Multithreading for Latency�, Intel Technology
Journal, Vol. 6, No. 1, February 2002.

Copyright © 2002 Intel Corporation.

32*Other names and brands may be claimed as the property of others.

Call to ActionCall to Action
�� Think of HyperThink of Hyper--Threading as a Technology Threading as a Technology

to Improve Instruction Throughput of to Improve Instruction Throughput of
ProcessorsProcessors

�� Can Benefit Multiprocessor Applications, Can Benefit Multiprocessor Applications,
e.g. e.g. OpenMPOpenMP**

